When It’s No Longer Rare

Let us end this sequence of Sophie and her cancer screening saga. We applied Bayes’ theorem and showed that the probability of having the disease is low, even with a positive test result. But the purpose was not to downplay the importance of diagnostics tests. In fact, it was not about diagnostics at all!

Screening a random person

Earlier, we have used a prior of 1.5% based on what is generally found in the population (corrected for age). And that was the main reason why the conclusion (the posterior) was so low. It was also considered a random event. Sophie had no reason to suspect a condition; she just went for screening.

Is different from Diagnostics 

You can not consider a person in front of a specialist as random. She was there for a reason – maybe discomfort, symptoms, or recommendation from the GP after a positive result from a screening. In other words, the previous prior of 1.5% is not applicable in this case; it becomes higher. Based on the specialist’s database or gutfeel, imagine that the assigned value was 10%. If you substitute 0.1 as the prior in the Bayes’ formula, we get about 50% as the updated probability (for the set of screening devices).

Typically, the diagnostic test would have a better specificity. If the specificity goes up from 90 to 95%, the new posterior becomes close to 70%. It remains high, even if the sensitivity of the equipment dropped from, say, 95% to 90%.