If n letters are placed randomly into n envelopes (with address), what is the expected number of envelopes with the correct letter inside?
Before addressing that, let’s look at a derangement problem. It is the probability of no match. For n items, it is the number of derangements divided by the number of permutations.
!n/n! = (n!/e)/n! ~ 1/e = 0.37
Let’s do a Monte Carlo and see what we get
itr <- 100000
let_env <- replicate(itr, {
n <- 100
env <- seq(1:n)
let <- sample(seq(1:n), n, replace = FALSE, prob = rep(1/n, n))
counter <- 0
for (i in 1:n) {
if(env[i] == let[i]){
counter <- counter + 1
}else{
counter <- counter
}
}
if(counter == 1) {
sounder <- 1
}else{
sounder <- 0
}
})
mean(let_env)
0.36827
So what about the original question of the expected number?
itr <- 100000
let_env <- replicate(itr, {
n <- 100
#env <- sample(seq(1:n), n, replace = FALSE, prob = rep(1/n, n))
env <- seq(1:n)
let <- sample(seq(1:n), n, replace = FALSE, prob = rep(1/n, n))
counter <- 0
for (i in 1:n) {
if(env[i] == let[i]){
counter <- counter + 1
}else{
counter <- counter
}
}
counter
})
mean(let_env)
1.00014